

Breaking it Down: The World as Legos
Benjamin Savage, Eric Chu

To devise a general formalization for identifying objects via image processing, we
suggest a two-pronged approach of identifying principal parts and model fitting to encode
spatial relationship. We begin with a relatively simple object, the cube. Additional
motivation for this choice was the fact that much of the man made world is composed of
cubic shaped structures, so cube recognition could serve as an input to later, more
complex object recognition tasks. Our recognition formalization begins with training
SVMs to identify the principle parts of an object. For our project we used an SVM to
pick out cube corners like those appearing in man-made objects. In the second stage of
our formalism, information from the detected locations of the principle object
components is used to fit a pre-defined model to the location data. We then used the
minimal least-squares affine transformation to fit an arrangement of seven corners—our
“cube-model”—to various permutations of the detected corners. This model contains
information about the spatial relationships between the constituent corners and
successfully distinguishes between possible cubes and impossible cubes.

Introduction
Current object recognition algorithms face the
challenge of generalization. It is possible for a
machine to identify a teacup if the teacup is
presented to the machine in the same size and
orientation; otherwise, the machine falters in
its recognition. In an attempt to model human
vision and human spatial cognition, the
purpose of this project is to take a step
towards making object detection and
recognition rotationally invariant, scale
invariant, and partially occlusion invariant.
By constructing object models and
discovering a least-squares mapping from a
suspect object to its model, we hope to
achieve that end.

The Overview
After a cursory observation of the human
visual system, we generated a list of three
major elements that contribute to the
flexibility of human object recognition:

1. Using parts and their relationships to
identify the whole

2. Using context to identify the object
3. Being able to mentally manipulate /

rotate the object

We have successfully implemented very basic
elements of each of these three components in
our attempt to construct a better object
recognition algorithm. Figure 1 diagrams the
general flow chart devised for this particular
scheme.

Figure 1 Flow chart of algorithm.

SVM

Ranker

Model Fitting Image In Object Out

The SVM step performs the operation of
decoding contextual information as well as
identifying fundamental parts of an object.
The Model Fitting step provides the computer
with a mathematical framework with which to
rotate, scale, translate, and skew the object. It
also encodes the spatial relationships between
the fundamental parts of an object. Using
these steps in conjunction with each other, we
are able to identify very basic cubes.

From now on, we shall discuss how the
algorithm applies to identifying cube-like
objects and conclude by elaborating on how it
can be generalized to a broader framework.

1

The SVM
Since the simple building blocks of a cube are
its corners, the main purpose of the SVM /
machine learning algorithm is to reinforce or
discourage certain classifications of pixels as
“cube-corners”. These corners will be used
later in object mappings.

In early incarnations of this project, we
attempted to use the Harris corner detector to
detect “cube-corner” candidates. This
approach was unsuccessful because it only
used local pixel data and did not use
contextual clues to make predictions. We had
much more success with the SVM classifier
by using large image patches and geometrical
information to encode contextual knowledge
into our classifier.

We first converted our color image to an
intensity image, and then took the gradient of
that image. To recognize “cube-corners” in
this image we extracted 51x51 pixel image
patches to make sure that some amount of
context was observed. Experimentation with
training an SVM to directly classify image
patches of this kind showed little promise for
many reasons. Therefore, to both endow the
SVM with a sense of the spatial ties between
the various pixels in this patch, and to
substantially reduce the dimension of the
space, we found the projection of this 2601-
vector (51x51 = 2601) into a 277 dimensional
space. The projection “basis” chosen was a
collection of geometric masks that were
blurred significantly. Below (figure 2) are
artistic renditions of 3 such spaces.

Figure 2 Artistic renditions of our basis masks

applied on to 51x51 image patches.

These subspaces found trends in various
dimensions, while remaining invariant to a
good deal of noise. Furthermore, they allowed
us to highlight significant characteristics of a
corner in a 51x51 patch (such as an edge
emanating from the center pixel). Using this
technique gave superior results to using PCA
to create a basis of “eigen-corners”, and far
superior results to using the direct 51x51
cutout.

In the final step, the 277 vector given by
projecting into this subspace is scaled to unit
length to eliminate the variation caused by
differences in lighting. This 277 element
vector was used as training and test vectors in
an SVM. Using a Gaussian kernel in our SVM
with a γ of 5, we were able to obtain less than
13% error on a leave-one-out cross-validation
test.

As another form of validation we ran the SVM
on every single 51x51 image patch in an
image not used in our training set. Every
pixel is labeled with its margin from the
support vectors. More “confident” points are
highlighted in red. The results are shown
below. These results were even more
encouraging than the LOOCV test error. Not
only did the SVM find most cube-corners in
the image, but the confidence of the prediction
seems to be well correlated with how well
centered the corner is in the cut-out. We
described this image as a “corner-heatmap”.
(Note: our SVM was further improved after
using it to create this image, but as the image
took 30 minutes to generate we decided not to
update this image.)

2

Note that x is in homogenous coordinates (so
that A contains translation information). This
model allows us to find the Likelihood of this
arrangement of the corners given the
parameters of the affine transformation. We
even briefly toyed with the idea of viewing
this problem in a Bayesian framework where
there was some prior distribution on the
transformation A, although we didn’t have
time to explore this idea in depth. We found
the maximum likelihood estimate of the affine
transformation to be as follows.

Figure 3 Original photo (left)—the Cornell Box—
and corner-heatmap (right).

Cube Regression

We developed mathematical machinery to
grapple with the task of identifying cubes
from our detected corner data. The general
idea is laid out in figure 4. We modeled a
perspective of a cube (or even more generally,
any object with highly distinguishable
“principle” image components such as corners)
as a set of 3-D homogeneous points X = {x(1),
x(2), … , x(m)}. When appearing in an image,
this set of points may be rotated, scaled, and
translated. On top of this there may be
random noise, or perhaps distortion due to the
fact that the cube is being viewed from a
slightly different perspective.

Figure 4. Diagram of cube regression in action.

Thus, we will model the positions of all of the
corners of the cube in the image as an affine
transformation of the x(j), added to a 2-D
Gaussian error term, as in equation 1.

ε+=)()(ii Axz (1)

(1−

⋅⋅⋅= TT XSXXSW) (2)
WZA i

i ⋅=)((3)

In equation (2), Z(i) is a 3 x m matrix of the
observed corner locations (of image i) in
homogenous coordinates, (see figure 5), X is
also a 3 x m matrix but this time of the model
points, and S is a diagonal matrix of
weightings used to weight the error of each
point relative to one another. (It is the inverse
covariance matrix when the distribution of
noise around each point is assumed to be a
circular Gaussian).

Cube Model

Observed
corners with
wireframe
maximum
likelihood
estimate cube.

3

Figure 5. (Top) An example training image. (Bottom)
The Z(i)-matrix used in equation 3. Note that the 2nd

point is missing (and hence all zeros).

We were pleased with the resemblance of this
weighted regression formula to the normal
equations. In our tests we found that this
worked quite well. This formula allowed us to
quickly find the likelihood that a set of points
was generated by a given model. As desired it
is completely invariant to translation, rotation
in the plane, scaling, and is mildly robust to
minor distortion. We even found a method of
fitting less than the full m points by setting
ones to zeros in the homogenous coordinate.
If the SVM did not observe a corner (either it
was not in the image, or the SVM simply
made an error), A was still calculated, using
the remaining data from the other points (with
the zero-ed column). This allowed us to
realize the dream of making a model robust to
partial occlusion.

To generate the “cube-model” we derived a
form of the EM algorithm. By finding the
ordered locations of all visible corners in
hundreds of observed cubes {Z_1, Z_2, …,
Z_n}, we generated a training set. By
assuming each training example was

generated by the same model under an affine
transformation A_i, for i = 1 to n, and treating
the A_i as the latent variables, we were able to
find the best “cube-model”. We were also
able to find the variance of error for each
individual point to create the weighting matrix
S. Experimentation showed that using this S
gave superior results to the non-weighted case
of simply using the identity matrix for S. The
EM algorithm was extremely efficient and
converged in around 10 steps. Figure 6 shows
the results of this algorithm after convergence.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

207214214111980100
22016268163221068
1111101

)(iZ

Figure 6. Note the seven major clusters

corresponding to the seven prominent corners of a
cube. Also, note that the “center” corner has the

most variance.

This mathematical side of our project was far
more satisfying than the image processing
portion. We were able to apply the techniques
taught in class (Linear regression, EM
algorithm, multivariate gaussians, maximum
likelihood estimation), to achieve the goal of
storing the spatial relationships of parts of an
object in a mathematical model, and to create
an affine transformation invariant object
detection framework. We encountered one
truly difficult challenge however when it came
time to implement this methodology: factorial
blowup. Unfortunately, the order of the corner
points is important, and so there was a
factorial blow up. When 150 cube corners
were detected in an image, say, we had to try
all

4

[(7C0)* (150P7)] + [(7C1)* (150P6)] + [(7C2)*
(150P5)] + [(7C3)* (150P4)]
possible permutations (each bracketed term
corresponds to a certain number of un-
observed corners).

There is still hope that one might solve this
problem. It makes sense to use the confidence
of the SVM prediction to try the “most
confident” corners first. There are other
optimizations and heuristics to try here for
ordering that search, but we didn’t have time
to implement any of these methods.

It may also be possible that this algorithm is
useful just not in this particular context. It
might be more suited to eliminating options
rather than to find the optimal one.

Using the simple heuristic (ordering by SVM
confidence), we were able to identify a cube in
simple cube images (see figure 7).

Figure 7. (Top row) Shows the result of running
simple heuristics on the given cube before finally

choosing the top 7. (Bottom row). Shows the results
of model fitting to the top 6 or 7 points.

The Future
One idea we had and experimented with was
to train multiple SVMs to identify the

different corners of a cube. This would have
to be done in the general object case. (For
example, using this framework to detect
human faces, one would train a nose SVM, a
right eye SVM, a mouth SVM, etc…). This
drastically reduces the number of
permutations of image locations to try in the
model fitting step of the paradigm. We lacked
enough training data to create robust SVMs
for each type of corner, we would have needed
several hundred more images of cubes. The
other problem, (particular to the cube) is that
every “principle-part” is the same as every
other one, just rotated in 3 dimensions.

“Tiering” is another idea to for future research
to pursue. Once the method in this paper is
perfected to recognize small objects, we treat
collections of objects in the same fashion to
recognize more complex, compound objects,
such as cities, freeways, or airplane
formations. By constructing, say, a model of a
collection of cubes to represent a city.

Finally, the weakness of the SVM is that it is a
binary classifier. Ultimately, to create a
machine capable of identifying all objects, one
would like to not enter image patches into
thousands of various SVMs. Ideally one
could create an n-object-classifier, whose
running time did not vary with n. This might
improve detection of every kind of object,
cube corners would be better defined in
contrast to all other objects than with simply
“cube-corners” and “non-cube-corners”.

Acknowledgements
We’d like to acknowledge Geremy Heitz for
initial guidance, Carl Erickson for
mathematical assistance, and Thorsten
Joachims for SVM_light. And, of course,
Andrew Ng for wonderful instruction that
made this possible.

5

References
Cornell Box, The. Cornell University Program of Computer Graphics. 15 Dec, 2006.
 <http://www.graphics.cornell.edu/online/box/>
Corner Detection. Wikipedia. 15 Dec, 2006. <http://en.wikipedia.org/wiki/Corner_detection>
Derpanis, Konstantinos G. The Harris Corner Detector. 15 Dec, 2006.
 <www.cse.yorku.ca/~kosta/CompVis_Notes/harris_detector.pdf>

6

	Introduction
	The Overview
	The SVM
	The Future
	Acknowledgements

